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Abstract

 Purpose of review—The exposome concept proposes a comprehensive assessment of 

environmental exposures from the prenatal period onwards. However, determining exposure 

timing especially over the prenatal period is a major challenge in environmental epidemiologic 

studies.

 Recent findings—For decades teeth have been used to estimate long-term cumulative 

exposure to metals. Recently developed high-dimensional analytical methods that combine 

sophisticated histological and chemical analysis to precisely sample tooth layers that correspond to 

specific life stages have the potential to reconstruct the exposome in the second and third 

trimesters of prenatal development and during early childhood.

 Summary—A retrospective temporal exposomic approach that precisely measures exposure 

intensity and timing during prenatal and early childhood development would substantially aid 

epidemiologic investigations, particularly case–control studies of rare health outcomes.

Keywords

teeth; exposome; fetal; environmental; metals; organics; stress; diet

 Introduction

The ‘Exposome’ concept was introduced in 2005 to address the disparity between the 

genomic sciences, where rapid technological advances provided an expanse of high-

precision analyses, and the environmental exposure sciences that measured a small fraction 

of the thousands of environmental exposures individuals experience [1]. The exposome 

concept encompasses lifecourse environmental exposures (including lifestyle factors), from 

the prenatal period onwards [1]. It is important to consider that the exposome includes not 

only external exposures but also internal factors (e.g. inflammation, infection, and the 

microbiome) [2]. While the definition of the exposome evolves (see Miller and Jones [3]), 
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the fundamental concept of the exposome continues to gain momentum internationally. 

Notably, in the US, the Human Exposome Project supported by the National Institutes of 

Health and, in Europe, the HELIX, HEALS and EXPOsOMICS projects, as well as projects 

at various academic institutions are examining specific aspects of the exposome.

 Challenges to Uncovering the Fetal Exposome

There are many challenges that must be overcome before the exposome concept can be taken 

from a theoretical foundation to wide-spread practical application, as was the case with the 

genomic sciences [2]. Foremost, the exposome, unlike the genomic sequence, is highly 

variable and dynamic, and continues to evolve throughout the individual’s lifetime [1, 4]. 

Longitudinal birth cohort studies that collect biomarkers of environmental chemical 

exposure during pregnancy and then follow offspring into later life would provide the 

strongest evidence to assess the impact of exposures during key developmental windows in 

humans. However, the expense and time required for such studies are major barriers to 

investigating lower frequency conditions with long latency periods. Another important 

barrier to studying the fetal exposome is that maternal biomarkers do not necessarily provide 

accurate measures of fetal exposure for all chemicals. Reliance on maternal biomarkers of 

fetal exposure fails to account for variability in placental transport and metabolism, 

potentially overlooking the significant interplay at the maternal-fetal interface [5–7]. 

Umbilical cord blood has been successfully collected at birth in epidemiologic studies and 

has provided valuable exposure information [8–11]. However, for compounds with a short 

half-life in blood, cord blood levels can only provide information on the latter part of the 

third trimester.

 The Tooth Exposome

To overcome the need of large sample sizes and have a direct measure of the fetal 

environment, we propose that the exposome biomarkers would benefit from two attributes - 

be retrospective and incorporate temporal signatures. This has recently been referred to as 

the ‘retrospective temporal exposome’ [12]. For health outcomes that occur at lower 

frequencies, this biomarker would be applied in population-based case-control designs. 

Unlike contemporary approaches that are cross-sectional, such biomarkers would provide 

time-series exposure data similar to that obtained from a longitudinal study, whilst doing so 

retrospectively.

In this overview, we propose the use of teeth as a matrix that provides an opportunity to 

retrospectively reconstruct the dynamic exposome. We also identify the limitations of the 

use of teeth, which future work will hopefully address. Key aspects of the well-defined 

incremental formation of teeth and its relevance to exposure assessment have been detailed 

previously [13 15].
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 Components of the Exposome that are Measurable in Tooth Matrix 

Biomarkers

 i. Metallomics

Metals have been measured in teeth for many decades, with lead being the most studied 

toxicant in teeth [16–18]. Because many metal toxicants accumulate preferentially in bone, 

early studies considered teeth as a useful biomarker for measuring long-term exposure [16–

18]. Most notable are studies on lead, as the skeletal compartment comprises the major 

depository of total body burden and is also a potential source of internal exposure due to 

release of lead during bone remodeling, such as occurs in pregnancy or osteoporosis [19]. 

Several studies have shown that children living in lead contaminated locations have higher 

lead levels in their deciduous teeth than children from lower exposure environments [17, 18, 

20–22]. The suitability of teeth as exposure biomarkers for other metals was also explored 

(cadmium, for example [23]).

Over the last two decades, microspatial sampling combined with sophisticated histological 

analysis has provided a means to uncover the timing of metal uptake, including prenatal 

exposure, from teeth biomarkers [24–29]. However, detailed validation against 

environmental samples and other biomatrices has only been performed in the last five years. 

For validation of Mn, there was a significant positive association of levels in parts of dentine 

formed in the second trimester with Mn loading in floor dust sampled during the second 

trimester of pregnancy [30]. That study also showed that Mn levels in dentine adjacent the 

neonatal line was strongly associated with cord blood Mn concentrations, both biomarkers 

reflecting Mn uptake close to the time of birth. Another study undertook detailed validation 

of tooth Pb measurements against maternal pregnancy blood levels and also bone lead levels 

postpartum [13]. Of note for metals analysis is the application of laser ablation-based mass 

spectrometry that allows measurement of multiple metal targets in the same scan as shown 

in Figure 1a.

 ii. Dietary components and essential nutrients

Trace element and stable isotope signatures in teeth (and bone) have been used for several 

decades to reconstruct major diet transitions in past populations, such as terrestrial versus 

marine resource exploitation [64]. Typically, the ratio of a non-essential element to a 

chemically similar essential element is used to determine the trophic steps up a food chain 

[65]. The most common ratios used to assess diet in past populations are Sr/Ca and Ba/Ca. 

Due to the process known as biopurification, Sr/Ca and Ba/Ca ratios decrease during 

metabolic processes that involve Ca leading to a decrease in these ratios in consumers 

relative to diet [66]. The ratio decrease between diet and tooth values are relatively constant 

so that the diet of past populations can be compared against known herbivores and 

carnivores to identify the relative importance of plant and animal products in the diet [67]. 

Similarly, stable isotope ratios of light elements carbon and nitrogen also show partitioning 

through metabolic processes used to identify trophic level [68]. Carbon and nitrogen 

isotopes are typically measured from dentine collagen and reflect the major protein sources 

within a diet [69]. Recently, oxygen isotope values measured from the skeletal remains of 

Richard III were interpreted as an increase in wine intake [70]. Due to the sensitivity and 
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sample preparation restrictions of the techniques used for stable isotope analysis, the 

temporal resolution is limited.

Stable isotopes have been used to reconstruct weaning practices based on the child being one 

trophic level higher than mother [71–74], however several drawbacks have been identified in 

relation to assumptions of trophic offsets [68, 72, 75]. The study of trace elements rather 

than isotopes offers the advantage of better temporal resolution. Barium was recently 

identified as a sensitive biomarker in teeth to infant diet transitions from exclusive 

breastfeeding to the introduction of infant formula and process of weaning [76]. In 

children’s teeth, Ba levels in dentine rose after birth and remained relatively steady for the 

duration of exclusive breastfeeding, rising again at the introduction of infant formula (Figure 

1b). The distinction in diet is made possible due to differences in Ba dietary exposure. A 

similar pattern was observed in teeth from captured macaques that showed a decrease in Ba 

over the process of weaning. Strontium has also been used to determine weaning patterns in 

past populations and nonhuman primates [77, 78] but Ba is considered a more sensitive 

marker of diet [74, 76, 79].

The isotopic partitioning of other elements (Mg, Fe, Cu and Zn) from diet to tissue is also 

under investigation with the promise that the use of multiple elemental and isotopic systems 

will provide more robust results [65]. The isotopic composition of teeth (and bones) can also 

provide information on migration and habitat conditions [64]. The precise determination of 

diet components in mixed diets remains a challenge via stable isotope ratio analysis [64].

 iii. Environmental organics: Targeted exposome analysis

Current prenatal exposome approaches do not allow proper characterization of timing of 

exposure to an organic contaminant or mixtures and association with health effects at a later 

life stage [31]. Correlations between targeted organic contaminant concentrations in 

maternal and fetal matrices collected at various stages of pregnancy and child birth suggest 

inconsistent associations and mixed outcomes in assessing prenatal exposures [9]. It is well 

acknowledged that a unifying bio-matrix to assess perinatal exposome for xenobiotics is 

needed [32]. Teeth offer a unique advantage of accurate fetal organic chemical exposure 

assessment on a temporal scale [33]. This is not true for conventional biomarkers such as 

maternal bio-matrices due to variations in placental transport or for cord blood due to short 

half-lives of many chemicals [34, 35].

Teeth analysis was explored for the presence and quantification of various organic 

chemicals, contaminants and metabolites such as analgesics, pesticides and plastics additives 

[36], anesthetics [37], antibiotics [38, 39], illegal drugs [37, 40], metabolites of alcohol [41] 

and tobacco [42–44], and organochlorines [45–48]. The major limitation of the 

methodologies employed in these studies was to grind and analyze whole teeth (that 

constitutes the tissue and blood vessels within the pulp chamber) leading to exposure 

misclassification because of differential deposition of organic chemicals and contaminants in 

different tooth compartments. Andra and colleagues [12, 33] have demonstrated micro-

spatial organic chemical measurements of specific growth rings in dentine that correspond to 

trimester-specific fetal developmental windows (Figure 1c). For example, mono-benzyl 

phthalate was quantified in dentine layers formed during the second and third trimester using 
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liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) targeted analysis 

[33]. This work needs to be expanded to encompass a comprehensive validation of the 

dentine-phthalate biomarkers against data available from conventional bio-matrices such as 

maternal urine during pregnancy and at birth, and newborn and childhood urine.

 iv. Environmental organics: Untargeted exposome profiling

Analyzing bio-matrices for measuring the totality of exposures to organic pollutants is (a) to 

assess a fraction of the vast and complex internal chemical milieu made of exogenous 

sources and endogenous responses, [49] and (b) a component of the top-down approach for 

scaling human exposome [50]. Advances in high-resolution mass spectrometers (MS), such 

as fouriertransform MS, [51] hybrid ion trap-orbitrap MS, [52] quadrupole time-of-flight 

MS, [53, 54] allow increased metabolic detection [55] and capture a wider, untargeted 

chemical space in the exposome [56, 57]. The power of measuring environmental organics 

exposome as a tool to evaluate health risks is gaining attention spanning several scientific 

domains [1, 4, 58, 59]. The blood exposome was the first effort directed towards 

incorporating literature data for about 1600 exo- and endogenous chemicals into identifying 

associated metabolic pathways and disease etiologies [60]. Other emerging exposome 

approaches that consider measuring organics with distinct features are (a) tooth exposome 

that utilizes a novel bio-matrix, [12] (b) volatolomics that use a specific physical fraction 

(viz., exhaled breath or volatile organic compounds pool), [61, 62], and (c) pregnancy 

exposome that relies on collective data from multiple matrices and multiple sampling points 

during prenatal and child birth phase [63].

Recently, we reconstructed the prenatal and early childhood exposure to multiple organic 

chemical classes using teeth [12]. We performed global screening of small molecules in 

trimester-specific formed dentine layers from deciduous teeth using liquid chromatography 

coupled quadrupole time-of-flight mass spectrometry (QTOF-LC/MS) metabolomics 

approach. QTOF-LC/MS analyses show unique and differential chemical signatures of 

environmental exposure that are individual and development-stage dependent. The results of 

this study (a) revealed more than 12,000 unique chemical signatures in trimester-specific 

dentine layers, (b) indicate high inter- and intra-child variability in screened chemical 

profiles, (c) show novel ‘known unknowns’ and ‘suspected unknowns’ compounds, (d) 

demonstrate exposure misclassification error that can cause misleading inferences about 

causality, and (e) most importantly, the reconstruction of exposure was done 7 to 10 years 

after prenatal and early childhood exposure. An example to demonstrate inter- and intra-

individual differences in chemical fingerprints on a temporal prenatal scale is shown in 

Figure 1c. In future, we will develop a hybrid approach for tooth exposome-wide measures 

for reconstructing fetal exposures. First, we will apply discovery methods that employ 

QTOF-MS detection after liquid and/or gas chromatography separation to generate large 

datasets, and full mass spectra scan plus MS/MS fragmentation of organic compounds and 

biomolecules. Second, we will perform targeted analysis of the relevant biomarkers after 

accurate mass identification of compounds from above, and library searching combined with 

advanced chemometrics and bioinformatics data mining tools. Finally, the findings will be 

validated in multiple matrices and exposure cases from an exposome perspective.
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 v. Stress signatures

Formation of the neonatal line (NL) is thought to be due to disturbances in the cells which 

lay down the tooth matrix for mineralization [80] and it’s width has been related to the 

difficulties in delivery [81]. Other accentuated growth lines have been observed, largely in 

enamel, which are similarly believed to be due to the disruption of tooth matrix deposition 

due to external stressors, both physical and social [82–84]. Several studies have compared 

the timing of these accentuated lines with clinical events such as injuries, bouts of 

dehydration/diarrhea, and hospitalizations [85–87] and other events such as weaning [88, 

89], and separation from dam [90]. These accentuated lines are typically identified and aged 

using light microscopy. However, the response to external stressors involves complex 

mechanisms and this technique cannot identify the biological systems or pathways impacted. 

Additionally, light microscopy methods are subjective, and highly dependent on operator 

expertise, quality of sample preparation and microscopy technique.

Recently a novel multi-tiered approach was presented that enables the identification of 

specific stress impacted systems using objective techniques to identify different signals in 

teeth and overlaying these with temporal mapping [90]. Firstly, elemental signals in teeth 

observed through laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-

MS) imaging indicated disruptions specific to bone remodeling. Second, it was 

demonstrated that molecular markers of specific homeostatic pathways activated in response 

to external stressors could be targeted by direct antibody labelling on thin sections of teeth. 

The final approach used Raman spectroscopy to chemically image teeth at high resolution 

that revealed both fine-scale regular rhythms and accentuated lines that corresponded to 

medical events (Figure 1d). Though this study was performed on a small biomedical animal 

model, it demonstrates the potential of these methods to measure an individual’s stress 

response to external stimuli across a population experiencing the same challenges.

 Conclusion

Tooth matrix biomarkers provide an opportunity to incorporate the intensity and timing of 

exposure in environmental health studies. Recent advances in technology allow high 

dimension analyses of a large range of targets in a single scan, which takes us closer to the 

ideal of the exposome concept of capturing the entirety of exposures over a life-time. In-

depth validation and recognition of the limitations of dental tissues, including missing 

information during the first trimester, are important considerations for future development of 

tooth matrix biomarkers.
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Key Points

• Fetal and early postnatal development comprise critical developmental 

periods when environmental stressors may disrupt life-long health 

trajectories

• Reconstructing the exposome during this time period is a major 

challenge in epidemiologic research due to the need for large sample 

sizes and long follow-ups

• Tooth matrix biomarkers incorporate the intensity and timing of 

exposure can overcome some of these challenges
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Figure 1. 
Components of the exposome measureable using tooth matrix biomarkers. (a) Metallomics: 

elemental bio-imaging of teeth using laser ablation-based mass spectrometry provides 

detailed spatial distribution of multiple metals across enamel and dentine. (b) Dietary 

transitions: recently developed biomarkers using barium signatures distinguish breast milk 

intake (between dashed lines) from introduction of infant formula (below black dashed line). 

(c) Targeted and untargeted organics analysis in teeth reveals exposure to multi-class organic 

chemicals within (2nd versus 3rd trimester) and between (Child A versus Child B) children. 

QTOFMS was operated in a dual electrospray ionization mode (positive and negative 
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modes). Study design and results are presented in Andra et al [12]. Abbreviations for the 

chemicals on Y-axis: BPA, bisphenol A; MMP, mono-methyl phthalate; MEP, mono-ethyl 

phthalate; MBP, mono-nbutyl phthalate; MBzP, mono-benzyl phthalate; MEHP, mono-2-

ethylhexyl phthalate; NIC, nicotine; COT, cotinine; HCOT, hydroxycotinine; BAP; 

bisphenol AP; BPF, bisphenol F; MP, methyl paraben; PP, propyl paraben; BP, butyl 

paraben; PFOA, pentadecafluorooctanoic acid; PFOS, perfluorooctanesulfonic acid; and 

DMP, dimethylphosphate. (d) Uncovering historical exposure to external stressors: Raman 

spectroscopic analysis of macaque tooth dentine shows signatures that correspond to various 

medical events.
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